1 安装

1.1 依赖的安装

1.1.1 安装ROS相关的依赖

ROS的版本为Kinetic and Melodic

sudo apt-get install -y ros-kinetic-navigation
sudo apt-get install -y ros-kinetic-robot-localization
sudo apt-get install -y ros-kinetic-robot-state-publisher

1.1.2 编译gtsam (Georgia Tech Smoothing and Mapping library)

wget -O ~/Downloads/gtsam.zip https://github.com/borglab/gtsam/archive/4.0.2.zip
cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/
cd ~/Downloads/gtsam-4.0.2/

进行到此步骤需要暂停一下,我是用的 ubuntu 16.04 , ros kinetic 版本
我的gtsam需要的eigen 需要改成使用系统的eigen,否则编译不通过。
具体更改方法为:https://github.com/TixiaoShan/LIO-SAM/issues/142

要在 gtsam 的 CMakeLists.txt 中 找到这句话 "if(GTSAM_USE_SYSTEM_EIGEN) find_package(Eigen3 REQUIRED)" 
在这句话之前插入  "set(GTSAM_USE_SYSTEM_EIGEN ON)" ,即可。

进行编译

mkdir build && cd build
cmake -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF ..
sudo make install -j8

1.1.3 编译LIO-SAM

cd ~/catkin_ws/src
git clone https://github.com/TixiaoShan/LIO-SAM.git
cd ..
catkin_make

2 参数配置

lio_sam:

  # Topics
  pointCloudTopic: "points_raw"               # Point cloud data
  imuTopic: "imu_raw"                         # IMU data
  odomTopic: "odometry/imu"                   # IMU pre-preintegration odometry, same frequency as IMU
  gpsTopic: "odometry/gpsz"                   # GPS odometry topic from navsat, see module_navsat.launch file

  # Frames
  lidarFrame: "base_link"
  baselinkFrame: "base_link"
  odometryFrame: "odom"
  mapFrame: "map"

  # GPS Settings
  useImuHeadingInitialization: true           # if using GPS data, set to "true"
  useGpsElevation: false                      # if GPS elevation is bad, set to "false"
  gpsCovThreshold: 2.0                        # m^2, threshold for using GPS data
  poseCovThreshold: 25.0                      # m^2, threshold for using GPS data
  
  # Export settings
  savePCD: false                              # https://github.com/TixiaoShan/LIO-SAM/issues/3
  savePCDDirectory: "/Downloads/LOAM/"        # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation

  # Sensor Settings
  N_SCAN: 16                                  # number of lidar channel (i.e., 16, 32, 64, 128)
  Horizon_SCAN: 1800                          # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048)
  timeField: "time"                           # point timestamp field, Velodyne - "time", Ouster - "t"
  downsampleRate: 1                           # default: 1. Downsample your data if too many points. i.e., 16 = 64 / 4, 16 = 16 / 1 
  lidarMinRange: 1.0                          # default: 1.0, minimum lidar range to be used
  lidarMaxRange: 1000.0                       # default: 1000.0, maximum lidar range to be used

  # IMU Settings
  imuAccNoise: 3.9939570888238808e-03
  imuGyrNoise: 1.5636343949698187e-03
  imuAccBiasN: 6.4356659353532566e-05
  imuGyrBiasN: 3.5640318696367613e-05
  imuGravity: 9.80511
  imuRPYWeight: 0.01

  # Extrinsics (lidar -> IMU)
  extrinsicTrans: [0.0, 0.0, 0.0]
  extrinsicRot: [-1, 0, 0,
                  0, 1, 0,
                  0, 0, -1]
  extrinsicRPY: [0,  1, 0,
                 -1, 0, 0,
                  0, 0, 1]
  # extrinsicRot: [1, 0, 0,
  #                 0, 1, 0,
  #                 0, 0, 1]
  # extrinsicRPY: [1, 0, 0,
  #                 0, 1, 0,
  #                 0, 0, 1]

  # LOAM feature threshold
  edgeThreshold: 1.0
  surfThreshold: 0.1
  edgeFeatureMinValidNum: 10
  surfFeatureMinValidNum: 100

  # voxel filter paprams
  odometrySurfLeafSize: 0.4                     # default: 0.4 - outdoor, 0.2 - indoor
  mappingCornerLeafSize: 0.2                    # default: 0.2 - outdoor, 0.1 - indoor
  mappingSurfLeafSize: 0.4                      # default: 0.4 - outdoor, 0.2 - indoor

  # robot motion constraint (in case you are using a 2D robot)
  z_tollerance: 1000                            # meters
  rotation_tollerance: 1000                     # radians

  # CPU Params
  numberOfCores: 4                              # number of cores for mapping optimization
  mappingProcessInterval: 0.15                  # seconds, regulate mapping frequency

  # Surrounding map
  surroundingkeyframeAddingDistThreshold: 1.0   # meters, regulate keyframe adding threshold
  surroundingkeyframeAddingAngleThreshold: 0.2  # radians, regulate keyframe adding threshold
  surroundingKeyframeDensity: 2.0               # meters, downsample surrounding keyframe poses   
  surroundingKeyframeSearchRadius: 50.0         # meters, within n meters scan-to-map optimization (when loop closure disabled)

  # Loop closure
  loopClosureEnableFlag: true
  loopClosureFrequency: 1.0                     # Hz, regulate loop closure constraint add frequency
  surroundingKeyframeSize: 50                   # submap size (when loop closure enabled)
  historyKeyframeSearchRadius: 15.0             # meters, key frame that is within n meters from current pose will be considerd for loop closure
  historyKeyframeSearchTimeDiff: 30.0           # seconds, key frame that is n seconds older will be considered for loop closure
  historyKeyframeSearchNum: 25                  # number of hostory key frames will be fused into a submap for loop closure
  historyKeyframeFitnessScore: 0.3              # icp threshold, the smaller the better alignment

  # Visualization
  globalMapVisualizationSearchRadius: 1000.0    # meters, global map visualization radius
  globalMapVisualizationPoseDensity: 10.0       # meters, global map visualization keyframe density
  globalMapVisualizationLeafSize: 1.0           # meters, global map visualization cloud density




# Navsat (convert GPS coordinates to Cartesian)
navsat:
  frequency: 50
  wait_for_datum: false
  delay: 0.0
  magnetic_declination_radians: 0
  yaw_offset: 0
  zero_altitude: true
  broadcast_utm_transform: false
  broadcast_utm_transform_as_parent_frame: false
  publish_filtered_gps: false

# EKF for Navsat
ekf_gps:
  publish_tf: false
  map_frame: map
  odom_frame: odom
  base_link_frame: base_link
  world_frame: odom

  frequency: 50
  two_d_mode: false
  sensor_timeout: 0.01
  # -------------------------------------
  # External IMU:
  # -------------------------------------
  imu0: imu_correct
  # make sure the input is aligned with ROS REP105. "imu_correct" is manually transformed by myself. EKF can also transform the data using tf between your imu and base_link
  imu0_config: [false, false, false,
                true,  true,  true,
                false, false, false,
                false, false, true,
                true,  true,  true]
  imu0_differential: false
  imu0_queue_size: 50 
  imu0_remove_gravitational_acceleration: true
  # -------------------------------------
  # Odometry (From Navsat):
  # -------------------------------------
  odom0: odometry/gps
  odom0_config: [true,  true,  true,
                 false, false, false,
                 false, false, false,
                 false, false, false,
                 false, false, false]
  odom0_differential: false
  odom0_queue_size: 10

  #                            x     y     z     r     p     y   x_dot  y_dot  z_dot  r_dot p_dot y_dot x_ddot y_ddot z_ddot
  process_noise_covariance: [  1.0,  0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    1.0,  0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    10.0, 0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0.03, 0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0.03, 0,    0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0.1,  0,     0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0.25,  0,     0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0.25,  0,     0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0.04,  0,    0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0.01, 0,    0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0.01, 0,    0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0.5,  0,    0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0.01, 0,      0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0.01,   0,
                               0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0.015]

3 试运行

3.1 试跑bag

bag数据是从  https://blog.csdn.net/unlimitedai/article/details/107378759#t0 这个博客的网盘链接下载的。下载太慢了,用手机断断续续下了3天。

3.2 tf树

在这里插入图片描述

3.3 节点关系图

在这里插入图片描述

3.3.1 GPS数据的处理

从节点的关系图可以看到,gps数据是输入到 robot_localization 包里的 navsat_transform_node 节点(重命名为 /navsat )。

navsat 节点订阅 里程计/odometry/navsat 和 /gps/fix ,发布里程计 /odometry/gps。

robot_localization 包里的 ekf_localization_node 节点(重命名为 /ekf_gps) 订阅 /imu_correct 、里程计 /odometry/gps、/tf ,发布 里程计/odometry/navsat 和 /tf 。

简单总结一下,就是先使用 GPS 和 odom(/odometry/navsat) 融合,输出一个odom(/odometry/gps),再通过imu和odom(/odometry/gps)融合,输出一个融合后的odom(/odometry/navsat)和 /tf。odom 会被校正2遍。

3.3.2 imu数据的处理

imu的数据输出有3个。
第一个就是上一节说的与odom进行融合。
第二个是输入到 /lio_sam_imageProjection 中,据论文说是进行激光点云的数据畸变校正,看完代码会回来改一遍。
第三个是输入到 /lio_sam_imuPreintegration 中,猜测是进行imu的预积分,输出一个校正后的odom(/odometry/imu_incremental)。

3.3.3 雷达数据的处理

雷达数据只输入到一个节点(/lio_sam_imageProjection)中,这个节点根据imu数据、雷达数据、与校正后的odom(/odometry/imu_incremental),输出进行校正后的2个点云数据。
-----分别是什么。

REFERENCES

1 https://blog.csdn.net/unlimitedai/article/details/107378759#t0
2