在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。里面使用的损失函数是均方差,而激活函数是Sigmoid。实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?下面我们就对DNN损失函数和激活函数的选择做一个总结。

1. 均方差损失函数+Sigmoid激活函数的问题

 在讲反向传播算法时,我们用均方差损失函数和Sigmoid激活函数做了实例,首先我们就来看看均方差+Sigmoid的组合有什么问题。

    首先我们回顾下Sigmoid激活函数的表达式为:

  的函数图像如下:

 从图上可以看出,对于Sigmoid,当的取值越来越大后,函数曲线变得越来越平缓,意味着此时的导数σ(z)也越来越小。同样的,当的取值越来越小时,也有这个问题。仅仅在取值为0附近时,导数的取值较大。

    在上篇讲的均方差+Sigmoid的反向传播算法中,每一层向前递推都要乘以,得到梯度变化值。Sigmoid的这个曲线意味着在大多数时候,我们的梯度变化值很小,导致我们的更新到极值的速度较慢,也就是我们的算法收敛速度较慢。那么有什么什么办法可以改进呢?

2. 使用交叉熵损失函数+Sigmoid激活函数改进DNN算法收敛速度

 上一节我们讲到Sigmoid的函数特性导致反向传播算法收敛速度慢的问题,那么如何改进呢?换掉Sigmoid?这当然是一种选择。另一种常见的选择是用交叉熵损失函数来代替均方差损失函数。

    我们来看看二分类时每个样本的交叉熵损失函数的形式:

J(W,b,a,y)=[ylna+(1y)ln(1a)]

这个形式其实很熟悉,在逻辑回归原理小结中其实我们就用到了类似的形式,只是当时我们是用最大似然估计推导出来的,而这个损失函数的学名叫交叉熵。

 使用了交叉熵损失函数,就能解决Sigmoid函数导数变化大多数时候反向传播算法慢的问题吗?我们来看看当使用交叉熵时,我们输出层的梯度情况。

3. 使用对数似然损失函数和softmax激活函数进行DNN分类输出

 在前面我们讲的所有DNN相关知识中,我们都假设输出是连续可导的值。但是如果是分类问题,那么输出是一个个的类别,那我们怎么用DNN来解决这个问题呢?

    比如假设我们有一个三个类别的分类问题,这样我们的DNN输出层应该有三个神经元,假设第一个神经元对应类别一,第二个对应类别二,第三个对应类别三,这样我们期望的输出应该是(1,0,0),(0,1,0)和(0,0,1)这三种。即样本真实类别对应的神经元输出应该无限接近或者等于1,而非该样本真实输出对应的神经元的输出应该无限接近或者等于0。或者说,我们希望输出层的神经元对应的输出是若干个概率值,这若干个概率值即我们DNN模型对于输入值对于各类别的输出预测,同时为满足概率模型,这若干个概率值之和应该等于1。

    DNN分类模型要求是输出层神经元输出的值在0到1之间,同时所有输出值之和为1。很明显,现有的普通DNN是无法满足这个要求的。但是我们只需要对现有的全连接DNN稍作改良,即可用于解决分类问题。在现有的DNN模型中,我们可以将输出层第i个神经元的激活函数定义为如下形式:

这个方法很简洁漂亮,仅仅只需要将输出层的激活函数从Sigmoid之类的函数转变为上式的激活函数即可。上式这个激活函数就是我们的softmax激活函数。它在分类问题中有广泛的应用。将DNN用于分类问题,在输出层用softmax激活函数也是最常见的了。

    下面这个例子清晰的描述了softmax激活函数在前向传播算法时的使用。假设我们的输出层为三个神经元,而未激活的输出为3,1和-3,我们求出各自的指数表达式为:20,2.7和0.05,我们的归一化因子即为22.75,这样我们就求出了三个类别的概率输出分布为0.88,0.12和0。

 从上面可以看出,将softmax用于前向传播算法是也很简单的。那么在反向传播算法时还简单吗?反向传播的梯度好计算吗?答案是Yes!

 对于用于分类的softmax激活函数,对应的损失函数一般都是用对数似然函数取反,即:

  可见,梯度计算也很简洁,也没有第一节说的训练速度慢的问题。举个例子,假如我们对于第2类的训练样本,通过前向算法计算的未激活输出为(1,5,3),则我们得到softmax激活后的概率输出为:(0.015,0.866,0.117)。由于我们的类别是第二类,则反向传播的梯度应该为:(0.015,0.866-1,0.117)。是不是很简单呢?

    当softmax输出层的反向传播计算完以后,后面的普通DNN层的反向传播计算和之前讲的普通DNN没有区别。 

4. 梯度爆炸梯度消失与ReLU激活函数

学习DNN,大家一定听说过梯度爆炸和梯度消失两个词。尤其是梯度消失,是限制DNN与深度学习的一个关键障碍,目前也没有完全攻克。

    什么是梯度爆炸和梯度消失呢?从理论上说都可以写一篇论文出来。不过简单理解,就是在反向传播的算法过程中,由于我们使用了是矩阵求导的链式法则,有一大串连乘,如果连乘的数字在每层都是小于1的,则梯度越往前乘越小,导致梯度消失,而如果连乘的数字在每层都是大于1的,则梯度越往前乘越大,导致梯度爆炸。

    比如我们在前一篇反向传播算法里面讲到了的计算,可以表示为:

5. DNN其他激活函数

 除了上面提到了激活函数,DNN常用的激活函数还有:

    1) tanh:这个是sigmoid的变种,表达式为:

  3)PReLU:从名字就可以看出它是ReLU的变种,特点是如果未激活值小于0,不是简单粗暴的直接变为0,而是进行一定幅度的缩小。如下图。当然,由于ReLU的成功,有很多的跟风者,有其他各种变种ReLU,这里就不多提了。

6. DNN损失函数和激活函数小结

上面我们对DNN损失函数和激活函数做了详细的讨论,重要的点有:1)如果使用sigmoid激活函数,则交叉熵损失函数一般肯定比均方差损失函数好。2)如果是DNN用于分类,则一般在输出层使用softmax激活函数和对数似然损失函数。3)ReLU激活函数对梯度消失问题有一定程度的解决,尤其是在CNN模型中。

    下一篇我们讨论下DNN模型的正则化问题。

 

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com) 

参考资料:

1) Neural Networks and Deep Learning by By Michael Nielsen

2) Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

3) UFLDL Tutorial